Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Life Sci Alliance ; 4(8)2021 08.
Article in English | MEDLINE | ID: covidwho-1282795

ABSTRACT

SARS-CoV-2 infection poses a global health crisis. In parallel with the ongoing world effort to identify therapeutic solutions, there is a critical need for improvement in the prognosis of COVID-19. Here, we report plasma proteome fingerprinting that predict high (hospitalized) and low-risk (outpatients) cases of COVID-19 identified by a platform that combines machine learning with matrix-assisted laser desorption ionization mass spectrometry analysis. Sample preparation, MS, and data analysis parameters were optimized to achieve an overall accuracy of 92%, sensitivity of 93%, and specificity of 92% in dataset without feature selection. We identified two distinct regions in the MALDI-TOF profile belonging to the same proteoforms. A combination of SDS-PAGE and quantitative bottom-up proteomic analysis allowed the identification of intact and truncated forms of serum amyloid A-1 and A-2 proteins, both already described as biomarkers for viral infections in the acute phase. Unbiased discrimination of high- and low-risk COVID-19 patients using a technology that is currently in clinical use may have a prompt application in the noninvasive prognosis of COVID-19. Further validation will consolidate its clinical utility.


Subject(s)
COVID-19/diagnosis , Machine Learning , Proteome/metabolism , Proteomics/methods , SARS-CoV-2/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Adult , Aged , Biomarkers/blood , COVID-19/epidemiology , COVID-19/virology , Female , Humans , Male , Middle Aged , Pandemics , Prognosis , Reproducibility of Results , SARS-CoV-2/physiology , Sensitivity and Specificity , Serum Amyloid A Protein/analysis
SELECTION OF CITATIONS
SEARCH DETAIL